
KAIST AI602 Project Report:
Compositional Meta-RL

Yoonyoung Cho * 1 Jisu Han * 1

Abstract

In recent years, meta-reinforcement learning
(meta-RL) methods have achieved impressive
results in robot learning. Such methods en-
able agents to learn new tasks by making use
of prior experience. However, current meta-RL
methods cannot generalize on challenging out-of-
distribution tasks. We hypothesize that to solve
these challenging scenarios, meta-learning agents
need to develop compositional reasoning; by do-
ing so, the agent can quickly learn to perform
novel tasks by reusing previously learned compo-
nents. In this work, we propose to implement this
intuition on a meta-learning framework. To this
end, we take inspiration from the recent success in
multi-task learning with modularization. To vali-
date our method, we experiment with our model
on a custom MetaWorld-ML4 benchmark, a chal-
lenging robot manipulation domain which neces-
sitates out-of-distribution generalization. We con-
firmed our method is comparable with prior al-
gorithms by tasks’ success rate on our custom
Meta-World benchmark experiments.

1. Introduction
For practical robots, we need algorithms that can learn how
to quickly solve new tasks by utilizing prior experience.
In fig. 1, the robot can quickly generalize to tasks such as
furniture assembly by exploiting prior knowledge in other
tasks such as woodworking or box-packing. Meta-learning
is a potential solution that can learn to learn novel tasks
by leveraging experiences on prior tasks. Specifically, in
the context of reinforcement learning (RL), meta-RL has
emerged as a promising resolution to the chronic overfitting
problem of RL agents that cannot generalize to seemingly
trivial distributional shifts.
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Figure 1. Illustration of compositional generalization in RL for
robot manipulation; the robot learns contextual elements such as
material properties, action affordances and constraints from prior
tasks, which accelerate learning and bootstrap performance on
novel tasks.

However, current meta-RL methods cannot generalize to di-
verse tasks – with only 40% success rate in Meta-World (Yu
et al., 2020). We believe this is because these methods lack
the ability to develop compositional reasoning of the task.
Humans commonly solve complex tasks by decomposing
them into easier sub-tasks and then combining the sub-task
solutions. For example, opening a doorknob is composed of
common sub-tasks such as reaching, grasping, and rotating
objects. Once we solve such sub-tasks, we can intuitively
open other doors that comprise similar actions. This type
of compositional reasoning permits reuse of the sub-task
solutions when tackling future tasks that share part of the
underlying compositional structure (Mendez et al., 2022).

There are two main lines of prior works. In meta-learning,
MAML (Finn et al., 2018) learns initial parameters at first,
and then quickly converges by gradient-descent updates.
FAMLE (Kaushik et al., 2020) also shares the same intuition
as MAML, solely learned by multiple initial parameters.
Since the parameters are disjointly learned per each train-
ing task, these gradient-based meta-learning approaches
are architecturally limited from sharing parameters, which
eventually prohibits compositional generalization.

In contrast, on context-based meta-learning approaches,
PEARL (Rakelly et al., 2019) learns the probabilistic en-
coder to infer context variables. However, it fails to general-
ize to novel tasks (Yu et al., 2020). We believe this is due
to their lack of compositional reasoning. While PEARL
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may learn arbitrary context structures, it is well-known
that compositional architectures are unlikely to emerge by
chance (Liska et al., 2018). Therefore, we believe we must
provide architectural bias to PEARL in order to enforce
compositionality.

To facilitate compositional learning, we take inspiration
from the recent success in multi-task learning with modu-
larization (Purushwalkam et al., 2019; Yang et al., 2020).
These works leverage the modularization of a network to
learn common, reusable parts across tasks. Especially,
(Yang et al., 2020) show that such a policy can learn multiple
tasks efficiently with the modularized network and one-hot
encoded task ID. However, these works are not directly ap-
plicable to meta-RL since they require a priori information
about each task, given as task ID or language descriptions.

On the other hand, PEARL (Rakelly et al., 2019) can au-
tonomously learn and recognize task context based on inter-
action history. In light of this, we propose to meta-learn task
contexts with PEARL (Rakelly et al., 2019), while adopting
a modularized context-conditioned policy architecture from
SM (Yang et al., 2020).

2. Problem Formulation
We formulate our problem as a goal-conditioned meta-RL
problem. Concretely, given the set of meta-training tasks
T1:N from the task distribution p(T ), we seek to generalize
to a novel task T ′ from the same task distribution. Each task
is formulated as a goal-conditioned MDP, which is defined
as T =

(
S,A,G, P (st+1|st, at), R(st, at; g), γ

)
.

Here, S is the state space, A is the action space, G is
the goal space, P (st+1|st, at) is the transition distribu-
tion, R(st, at; g) is the reward function, and γ is the dis-
count factor. To make the problem more practical, in-
stead of assuming access to the explicit goal g ∈ G, we
only provide l ∈ L as the text description about the goal,
such as “push the red button on the table”. During meta-
training process, given a set of training tasks sampled from
p(T ), the agent learns a policy that adapts to the task by
quickly recognizing the context c. Context c is a set of
elements which contain tasks and domain-level informa-
tion, expressed as c = {ĉ1, ĉ2, · · · , ĉN}. To infer the cur-
rent context, the agent leverages the history of past transi-
tions Ht = (o1, a1, r1, · · · , ot, at, rt) to condition the latent
context inference module ϕ(ct|ct−1, H1:t, l). At test-time,
we first seek to recognize the current context ct, and then
quickly adapt the policy π(·) to solve the new task to maxi-
mize the expected return.

3. Related Works
Context-based meta-RL Prior works have applied con-
text variables to meta-RL domain. This approach is called
context-based meta-RL, since these methods adapt to new
tasks by aggregating experience into a latent representa-
tion on which the policy is conditioned. PEARL (Rakelly
et al., 2019) infers context variables during meta-training
and rapidly adapts on meta-test time by updating the context
variables via data samples collected through exploration.
PEARL significantly outperforms the performance from
prior meta-RL methods (i.e. MAML (Finn et al., 2018)
and RL2 (Duan et al., 2016)) on MuJoCo simulator domain.
However, on Meta-World benchmark (Yu et al., 2020), prior
meta-RL methods outperform PEARL by more than 2 times.
Since Meta-World benchmark is evaluated on task distribu-
tions that are sufficiently broad to enable generalization to
new behaviors, PEARL cannot achieve sufficient generaliza-
tion on diverse domains. We expect our method will be able
to generalize well by leveraging compositional reasoning.

Policy Modularization Recently, soft modularization (Yang
et al., 2020) has achieved remarkable success in a multi-task
learning setup in which a single policy must generalize to
multiple different tasks. The key ingredient behind their suc-
cess was modularization, where the base policy consists of
multiple inter-connected modules, reconfigured by the rout-
ing network that dynamically determines their connectivity
based on the given task.

This work achieves compositional generalization by “in-
finite use of finite means” (Chomsky, 1965); or, in other
words, re-using modular components of the policy across di-
verse tasks. By splitting the policy into modules, they avoid
the problematic cross-task interference (Yang et al., 2020)
which is harmful to the agent’s training process; however, by
routing the shared modules, they also enable the transfer of
shared modules across multiple tasks. By the combination
of these two strategies, the policy can learn shared, reusable
elements of the task. However, this work is not directly
applicable to novel tasks as in the Meta-RL setup, since
the routing network requires hard-coded information of the
current task ID.

4. Our Approach
PEARL (Rakelly et al., 2019) can autonomously learn task
contexts from interaction data, yet lack the ability to com-
positionally generalize. Soft modularization (Yang et al.,
2020) learns a compositional policy and a routing network
that can generalize well across multiple tasks, yet they re-
quire hard-coded information about the task a priori, such
as task ID.

We observe that these two works are complementary: by
leveraging the meta-learning capability of PEARL (Rakelly
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Figure 2. Conceptual illustration of our approach. By leveraging
PEARL (Rakelly et al., 2019) for context recognition and modular-
ized policy from soft-modularization (Yang et al., 2020), we seek
to achieve a policy that compositionally generalizes to novel tasks.

et al., 2019) while also leveraging the compositionality of
SM (Yang et al., 2020), we can achieve a compositional
meta-policy that can generalize to novel tasks. Intuitively,
our strategy is to first recognize the context, and then adap-
tively reconfigure the policy modules to respond to the cur-
rent task.

Concretely, we utilize PEARL (Rakelly et al., 2019) to learn
a set of compositional contexts to condition Soft Modular-
ization (Yang et al., 2020). We train a context inference
network from PEARL (Rakelly et al., 2019) jointly with the
policy. The routing network in Soft Modularization (Yang
et al., 2020) is conditioned on the context to reconfigure the
base policy in response to the current task. This way, we
can train a context-conditioned policy that can generalize to
novel contexts which are compositions of prior elements.

Training. The overall meta-training pipeline is shown in
alg. 1, adapted from PEARL (Rakelly et al., 2019). As
with PEARL, we iterate between the data-collection process
(L2-12) and the training steps (L13-25) for each of i =
1 . . . T training tasks, where the policy is conditioned on the
goal-aware task-specific context zi derived from the goal
embedding gi and the interaction history Hi. To realize this,
we modify the pipeline to (1) include the goal embedding
gi, li. In practice, we utilize the CLIP (Radford et al., 2021)
embeddings to compute the latent representation of the goal
for the context encoder. Moreover, we (2) adopt the routing
network that re-configures the modularized base policy with
p1:N conditioned on the current context z for the N modules
of the base policy.

Architecture. Our (CMRL) model architecture is shown
in fig. 3. We utilize the context network formulated as a
2-layer MLP with 128 hidden channels, where given the
interaction history ht and the goal embedding g, the context
z is sampled at each step from zt ∼ p(zt|ht; g) where p

is product of multivariate gaussians p =
∏N

j=1N (µj , σj)
for each gaussian N (µj , σj) computed for each frame j in

Algorithm 1 CMRL Meta-training Loop
Require: Batch of training tasks {τi}Ti=1 from p(τ), learn-

ing rates α1, α2, α3

Initialize replay buffer Bi = ∅ for each training task
while not done do

for each τi do
Interaction history Hi = ∅
for k = 1, . . . ,K do

Query goal embedding gi from text li
Sample z ∼ qϕ(z|Hi, gi)
Get Routing weights p1:N ∼ ϕR(z)
Gather data from πθ(a|s, z, w) and add to Bi
Update Hi = {(sj , aj , s′j , rj)}j:1...N ∼ Bi

end for
end for
for step in training steps do

for each τi do
Sample interaction history Hi ∼ Bi and rollout
bi ∼ Bi
Query goal embedding gi from text li
Sample z ∼ qϕ(z|Hi, gi‘)
Li
actor = Lactor(b

i, z)
Li
critic = Lcritic(b

i, z)
Li
KL = βDKL(q(z|Hi)||r(z))

end for
ϕ← ϕ− α1∇ϕ

∑
i

(
Li
critic + Li

KL

)
θπ ← θπ − α2∇θ

∑
i Li

actor

θQ ← θQ − α3∇θ

∑
i Li

critic

end for
end while

h ∼ Bi. The routing network is a stack of 4× modules
as in Soft-Modularization (Yang et al., 2020) where the
context zt acts as the gating variable for the inputs to the
routing networks. The module weights p1:N are multiplied
by the bottleneck connections between the actor and critic
networks. The whole network is trained end-to-end based in
an offline-RL fashion with the SAC (Haarnoja et al., 2018)
loss.

5. Experiments
To validate our compositional model, we experiment with
an adaptation of the Meta-world Benchmark (Yu et al.,
2020). For this experiment, we come up with a custom
ML4 dataset.

Meta-Learning 4 (ML4): Few-shot adaptation to new
test task with 3 meta-training tasks. With the objective
to test generalization to new task, we hold out 1 test task
and meta-train policies 3 tasks. We randomize object and
goal positions and intentionally select training tasks with
compositional similarity to the test task. Table 1 shows a
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Figure 3. Our model architecture; given the interaction history
and the goal embedding, we sample the context pertaining to the
current task distribution. The routing network, conditioned on the
current context, dynamically re-configures the modularized policy
to output the actions parameterized as multivariate gaussians.

list of meta-train/meta-test tasks and a description of each
task: by meta-training on opening and closing drawers, we
expect the agent to recognize the meaning of opening and
closing; by operating the window in OPEN-WINDOW task,
we expect the agent to learn the affordances of the window.
From these prior experiences, we anticipate that the agent
would generalize to the CLOSE-WINDOW task.

Results. We compare our method to PEARL (Rakelly et al.,
2019): an off-policy actor critic meta-RL algorithm. We
show each task’s success rate results on the custom ML4
in fig. 4 and the demonstration example in fig. 6. We
observe that our method is comparable with PEARL by
tasks’ success rate. Fig. 5 shows the return value of each
episode during meta-training time and meta-test time. We
confirmed CLOSE-DRAWER task takes a high return com-
pared to other meta-training tasks. We believe this happens
since the CLOSE-DRAWER task is so easy to achieve, the
policy overfits that task.

6. Conclusion
We presented CMRL, a compositional approach for context-
based meta-RL. Currently, our algorithm does not perform
as well as the baselines. We believe that this is due to over-
fitting to a single task; since the policy collapses to only
solve a single task, we seek to introduce additional modules
for enforcing compositionality and improved context recog-
nition across multiple tasks. The proposed modification is
shown in fig. 7
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Task Goal description

Meta-train CLOSE-DRAWER Push and close a drawer. Randomize the drawer positions.
OPEN-DRAWER Open a drawer. Randomize drawer positions.
OPEN-WINDOW Push and open a window. Randomize window positions.

Meta-test CLOSE-WINDOW Push and close a window. Randomize window positions.

Table 1. A list of meta-train/meta-test tasks and a description of each task.

Figure 6. Demonstration of the robot successfully performing
CLOSE-DRAWER task.

Figure 7. Proposed next iteration of our algorithm.
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